Graph Neural Network in Recommender Systems

Jiarui Qin

Apex Data & Knowledge Management Lab Shanghai Jiao Tong University

Contents

• Basics of GNN

- Graph Convolution Networks (GCN)
- Graph Attention Networks (GAT)
- GNN in Social Recommendation
- GNN in Knowledge Graph Recommendation
- GNN in User-Item Bipartite Graph

Graph Convolution Networks (GCN)

- Spectral method
- Non-spectral method:
 - Represent a node using its neighbors by an iterative manner
 - GCN
 - Aggregator: $\mathbf{h}_{\mathcal{N}_v}^t = \mathbf{h}_v^{t-1} + \sum_{k=1}^{\mathcal{N}_v} \mathbf{h}_k^{t-1}$
 - Updater: $\mathbf{h}_v^t = \sigma(\mathbf{h}_{\mathcal{N}_v}^t \mathbf{W}_L^{\mathcal{N}_v})$
 - GraphSAGE
 - Aggregator: $\mathbf{h}_{\mathcal{N}_v}^t = \operatorname{AGGREGATE}_t \left(\{ \mathbf{h}_u^{t-1}, \forall u \in \mathcal{N}_v \} \right)$
 - Updater: $\mathbf{h}_{v}^{t} = \sigma \left(\mathbf{W}^{t} \cdot [\mathbf{h}_{v}^{t-1} \| \mathbf{h}_{\mathcal{N}_{v}}^{t}] \right)$
 - AGGREGATE function: avg/max pooling, LSTM

J.Zhou et al. Graph Neural Networks: A Review of Methods and Applications D.K.Duvenaud et al. Convolutional networks on graphs for learning molecular fingerprints. NIPS 2015 W.L.Hamilton et al. Inductive representation learning on large graphs. NIPS 2017

Graph Attention Networks (GAT)

• Aggregator:

$$\alpha_{vk} = \frac{\exp\left(\operatorname{LeakyReLU}\left(\mathbf{a}^{T}\left[\mathbf{W}\mathbf{h}_{v}\|\mathbf{W}\mathbf{h}_{k}\right]\right)\right)}{\sum_{j\in\mathcal{N}_{v}}\exp\left(\operatorname{LeakyReLU}\left(\mathbf{a}^{T}\left[\mathbf{W}\mathbf{h}_{v}\|\mathbf{W}\mathbf{h}_{j}\right]\right)\right)}$$
$$\mathbf{h}_{\mathcal{N}_{v}}^{t} = \sigma\left(\sum_{k\in\mathcal{N}_{v}}\alpha_{vk}\mathbf{W}\mathbf{h}_{k}\right)$$

Multi-head concatenation:

$$\mathbf{h}_{\mathcal{N}_{v}}^{t} = \Big\|_{m=1}^{M} \sigma \left(\sum_{k \in \mathcal{N}_{v}} \alpha_{vk}^{m} \mathbf{W}^{m} \mathbf{h}_{k} \right)$$

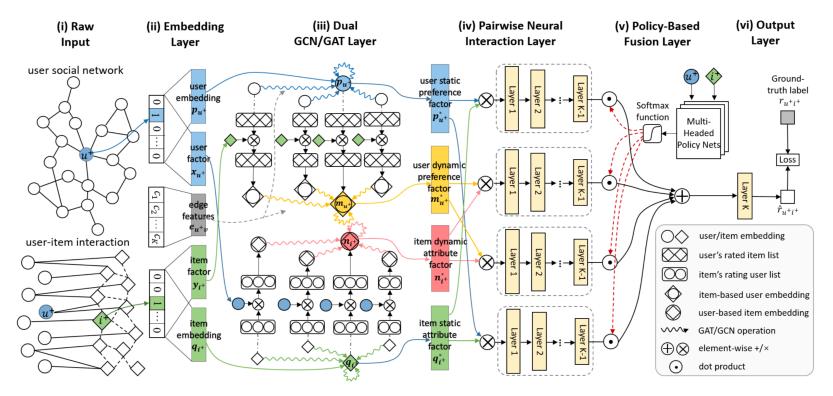
Multi-head average: $\mathbf{h}_{\mathcal{N}_{v}}^{t} = \sigma \left(\frac{1}{M} \sum_{m=1}^{M} \sum_{k \in \mathcal{N}_{v}} \alpha_{vk}^{m} \mathbf{W}^{m} \mathbf{h}_{k} \right)$

• Updater:

$$\mathbf{h}_v^t = \mathbf{h}_{\mathcal{N}_v}^t$$

P. Velickovic et al. Graph attention networks. ICLR 2018

GNN in Social Recommendation (DANSER)



- Three Graphs:
 - user-item interaction;
 - user social network;
 - item-item network (attract same user)

Q. Wu et al. Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems. WWW 2019

GNN in Social Recommendation (DANSER)

• GAT to capture social/item-item homophily

$$\mathbf{P}^{*} = \sigma(\mathbf{A}_{P}(G_{U})\mathbf{P}\mathbf{W}_{P}^{T} + \mathbf{b}_{P})$$

$$\alpha_{uv}^{P} = \frac{attn_{U}(\mathbf{W}_{P}\mathbf{p}_{u}, \mathbf{W}_{P}\mathbf{p}_{v}, \mathbf{W}_{E}\mathbf{e}_{uv})}{\sum_{w\in\Gamma_{U}(u)}attn_{U}(\mathbf{W}_{P}\mathbf{p}_{u}, \mathbf{W}_{P}\mathbf{p}_{w}, \mathbf{W}_{E}\mathbf{e}_{uv})}, v \in \Gamma_{U}(u)$$

• GAT to capture social/item-item influence

$$\mathbf{M}_{i^{+}}^{*} = \sigma(\mathbf{A}_{M}(G_{U})\mathbf{M}\mathbf{W}_{M}^{T} + \mathbf{b}_{M}), \mathbf{A}_{M}(G_{U}) = \{\alpha_{uv,i^{+}}^{M}\}_{M \times M},$$

$$\alpha_{uv,i^{+}}^{M} = \frac{attn_{U}(\mathbf{W}_{M}\mathbf{m}_{u}^{i^{+}}, \mathbf{W}_{M}\mathbf{m}_{v}^{i^{+}}, \mathbf{W}_{E}\mathbf{e}_{uv})}{\sum_{w \in \Gamma_{U}(u)} attn_{U}(\mathbf{W}_{M}\mathbf{m}_{u}^{i^{+}}, \mathbf{W}_{M}\mathbf{m}_{w}^{i^{+}}, \mathbf{W}_{E}\mathbf{e}_{uv})},$$

$$m_{ud}^{i^{+}} = \max_{j \in R_{I}(u)}\{y_{jd} \cdot y_{i^{+}d}\} \quad \forall d = 1, \dots, D$$

GNN in Social Recommendation (DANSER)

• Pairwise Neural Interaction Layer

$$\mathbf{s}_{a} = \phi_{K}^{a}(\cdots \phi_{2}^{a}(\phi_{1}^{a}(\mathbf{z}_{0}[a]))),$$

$$\phi_{k}^{a}(\mathbf{z}_{k-1}) = tanh(\mathbf{W}_{k}^{a}\mathbf{z}_{k-1}^{a} + \mathbf{b}_{k}^{a}), k \in [1, K-1],$$

$$\mathbf{z}_{0} = [\mathbf{p}_{u}^{*} \oplus \mathbf{q}_{i}^{*}, \mathbf{p}_{u}^{*} \oplus \mathbf{n}_{i}^{*}, \mathbf{m}_{u}^{*} \oplus \mathbf{q}_{i}^{*}, \mathbf{m}_{u}^{*} \oplus \mathbf{n}_{i}^{*}],$$

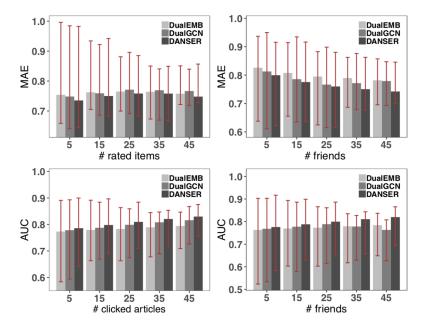
• Policy-Based Fusion Layer

$$e_{\gamma} = \mathbf{W}_{F}^{2} \tanh(\mathbf{W}_{F}^{1}(\mathbf{p}_{u}||\mathbf{q}_{i}) + \mathbf{b}_{F}^{1}) + \mathbf{b}_{F}^{2}.$$

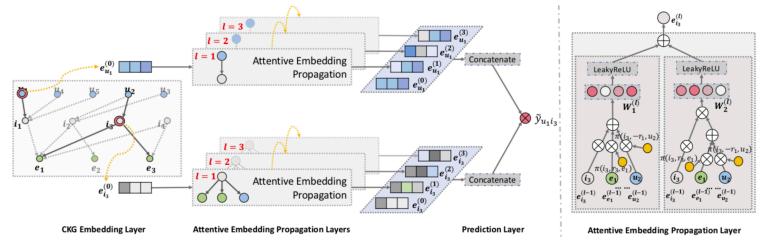
$$p(\gamma|\mathbf{p}_{u}, \mathbf{q}_{i}) = \frac{\exp(e_{\gamma})}{\sum_{a=1}^{4} \exp(e_{a})}.$$

$$\mathbf{s} = \mathbb{E}_{\gamma \sim p(\gamma|\mathbf{p}_{u}, \mathbf{q}_{i})}(\mathbf{s}_{\gamma}) = \sum_{\gamma=1}^{4} p(\gamma|\mathbf{p}_{u}, \mathbf{q}_{i}) \cdot \mathbf{s}_{\gamma}$$

	Epin	ions	WeChat		
	MAE	RMSE	P@10	AUC	
SVD++ [15]	0.8321	1.0772	0.0653	0.7304	
DELF [2]	0.8115	1.0561	<u>0.0752</u>	<u>0.7818</u>	
TrustPro [37]	0.9130	1.1124	0.0561	0.6482	
TrustMF [36]	0.8214	1.0715	0.0625	0.7005	
TrustSVD [10]	0.8144	1.0492	0.0664	0.7325	
NSCR [31]	0.8044	1.0425	0.0736	0.7727	
SREPS [16]	<u>0.8014</u>	<u>1.0393</u>	0.0725	0.7745	
DANSER	0.7781	1.0268	0.0823	0.8165	
Impv. ¹	2.87%	1.25%	9.33%	4.48%	
1					



GNN in Knowledge Graph Recommendation (KGAT)



- Collaborative Knowledge Graph: Add the user-item bipartite graph to the original KG
- Embedding Layer:
 - TransR: $g(h, r, t) = \|\mathbf{W}_{r}\mathbf{e}_{h} + \mathbf{e}_{r} \mathbf{W}_{r}\mathbf{e}_{t}\|_{2}^{2}$ $\mathcal{L}_{\mathrm{KG}} = \sum_{(I, I) \in \mathcal{T}} -\ln\sigma$

$$\kappa_{\rm G} = \sum_{(h,r,t,t')\in\mathcal{T}} -\ln\sigma\Big(g(h,r,t') - g(h,t)\Big)$$

- Attentive Embedding Propagation Layers
 - Information Propagation: $e_{N_h} = \sum_{(h,r,t)\in N_h} \pi(h,r,t)e_t$
 - Knowledge-aware Attention: $\pi(h, r, t) = (\mathbf{W}_r \mathbf{e}_t)^\top \tanh((\mathbf{W}_r \mathbf{e}_h + \mathbf{e}_r))$
 - Information Aggregation: $f_{GCN} = \text{LeakyReLU}(\mathbf{W}(\mathbf{e}_h + \mathbf{e}_{N_h}))$

r, t

X. Wang et al. KGAT: Knowledge Graph Attention Network for Recommendation . KDD 2019

GNN in Knowledge Graph Recommendation (KGAT)

• High-order Propagation:

$$\mathbf{e}_{h}^{(l)} = f\left(\mathbf{e}_{h}^{(l-1)}, \mathbf{e}_{\mathcal{N}_{h}}^{(l-1)}\right),$$
$$\mathbf{e}_{\mathcal{N}_{h}}^{(l-1)} = \sum_{(h, r, t) \in \mathcal{N}_{h}} \pi(h, r, t) \mathbf{e}_{t}^{(l-1)},$$
$$\mathbf{e}_{u}^{*} = \mathbf{e}_{u}^{(0)} \| \cdots \| \mathbf{e}_{u}^{(L)}, \quad \mathbf{e}_{i}^{*} = \mathbf{e}_{i}^{(0)} \| \cdots \| \mathbf{e}_{i}^{(L)},$$

- Model Prediction: $\hat{y}(u, i) = \mathbf{e}_u^* \mathbf{e}_i^*$.
- Optimization: BPR ranking loss + TransR loss, optimize the two loss alternatively

$$\mathcal{L}_{\rm CF} = \sum_{(u, i, j) \in O} -\ln \sigma \Big(\hat{y}(u, i) - \hat{y}(u, j) \Big)$$

$$\mathcal{L}_{\text{KGAT}} = \mathcal{L}_{\text{KG}} + \mathcal{L}_{\text{CF}} + \lambda \|\Theta\|_2^2$$

Table 2: Overall Performance Comparison.

	Amazon-Book		Last	-FM	Yelp2018		
	recall	ndcg	recall	ndcg	recall	ndcg	
FM	0.1345	0.0886	0.0778	0.1181	0.0627	0.0768	
NFM	0.1366	0.0913	0.0829	0.1214	0.0660	0.0810	
CKE	0.1343	0.0885	0.0736	0.1184	0.0657	0.0805	
CFKG	0.1142	0.0770	0.0723	0.1143	0.0522	0.0644	
MCRec	0.1113	0.0783	-	-	-	-	
RippleNet	0.1336	0.0910	0.0791	0.1238	0.0664	0.0822	
GC-MC	0.1316	0.0874	0.0818	0.1253	0.0659	0.0790	
KGAT	0.1489*	0.1006*	0.0870*	0.1325*	0.0712*	0.0867*	
%Improv.	8.95%	10.05%	4.93%	5.77%	7.18%	5.54%	

Table 3: Effect of embedding propagation layer numbers (L).

	Amazon-Book		Last	E-FM	Yelp2018		
	recall	ndcg	recall	ndcg	recall	ndcg	
KGAT-1	0.1393	0.0948	0.0834	0.1286	0.0693	0.0848	
KGAT-2	0.1464	0.1002	0.0863	0.1318	0.0714	0.0872	
KGAT-3	0.1489	0.1006	0.0870	0.1325	0.0712	0.0867	
KGAT-4	0.1503	0.1015	0.0871	0.1329	0.0722	0.0871	

Better Performance in Sparse Recommendation

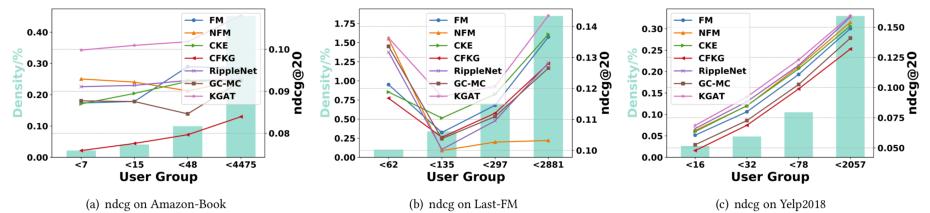
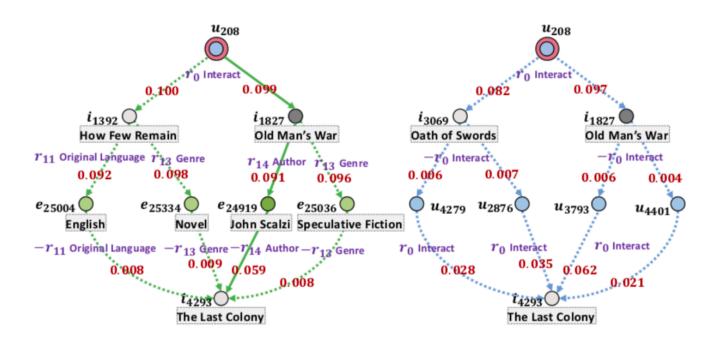
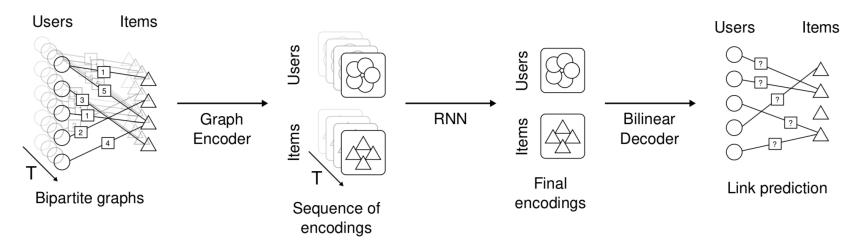


Figure 3: Performance comparison over the sparsity distribution of user groups on different datasets. The background histograms indicate the density of each user group; meanwhile, the lines demonstrate the performance *w.r.t.* ndcg@20.

Case study: Explainability





- Regard the sequential recommendation as a dynamic graph link prediction problem
- Use GCN as graph information aggregator:

$$\mathbf{h}_{u_i} = \xi \left(\operatorname{accum}_{r \in \mathcal{R}} \left\{ \sum_{j \in \mathcal{N}_{i,r}} \frac{1}{c_{ij}} W_r \mathbf{x}_{v_j} \right\} \right),$$
$$\mathbf{z}_{u_i} = \xi(W \mathbf{h}_{u_i}),$$

S.G. Fadel et al. Link Prediction in Dynamic Graphs for Recommendation. NIPS 2018

- Traditional CF models:
 - No sequential dynamics
 - Collaborative information is used in an implicit manner
- Sequential recommendation models:
 - Just use user-side temporal dynamics
 - Ignorance of collaborative information
- Sequential incremental graph models:
 - Lack of high-order propagation
 - Graph aggregator is simple and not effective enough
- Sequential Collaborative Recommender:
 - Spatial: uses collaborative information explicitly by exploiting high-order relations
 - Temporal: models both user- and item-side temporal dynamics

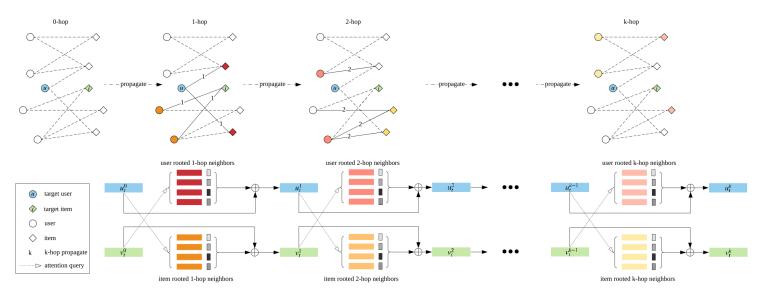
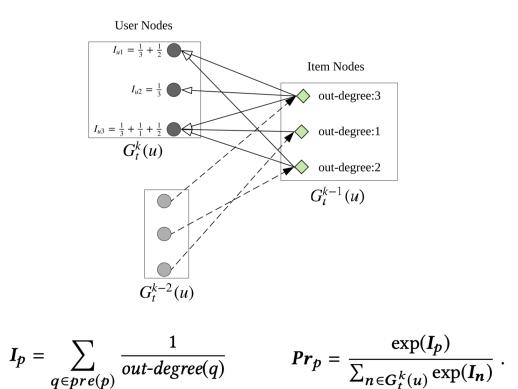


Figure 2: Multi-hop Co-Attention Graph Network calculation process.

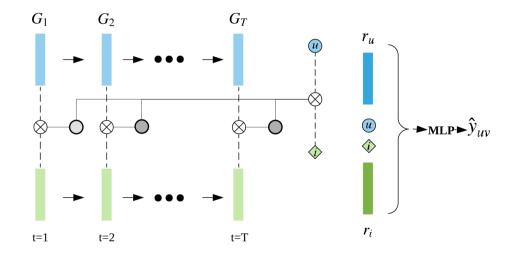
• Co-Attention Graph Network to aggregate high-order spatial information:

$$\boldsymbol{u}_{t}^{k} = \boldsymbol{u}_{t}^{k-1} + \sum_{i} \alpha_{ui}^{k} \boldsymbol{e}_{i}^{k} \qquad \qquad \alpha_{ui} = \frac{exp(LeakyReLU(\boldsymbol{a}^{T} [\boldsymbol{W} \boldsymbol{e}_{i}^{k} | | \boldsymbol{W} \boldsymbol{v}_{t}^{k-1}]))}{\sum_{\boldsymbol{e}_{j}^{k} \in \boldsymbol{G}^{k}(\boldsymbol{u})} exp(LeakyReLU(\boldsymbol{a}^{T} [\boldsymbol{W} \boldsymbol{e}_{j}^{k} | | \boldsymbol{W} \boldsymbol{v}_{t}^{k-1}]))}$$
$$\boldsymbol{v}_{t}^{k} = \boldsymbol{v}_{t}^{k-1} + \sum_{i} \alpha_{vi}^{k} \boldsymbol{e}_{i}^{k} \qquad \qquad \alpha_{vi} = \frac{exp(LeakyReLU(\boldsymbol{a}^{T} [\boldsymbol{W} \boldsymbol{e}_{i}^{k} | | \boldsymbol{W} \boldsymbol{u}_{t}^{k-1}]))}{\sum_{\boldsymbol{e}_{j}^{k} \in \boldsymbol{G}^{k}(\boldsymbol{v})} exp(LeakyReLU(\boldsymbol{a}^{T} [\boldsymbol{W} \boldsymbol{e}_{i}^{k} | | \boldsymbol{W} \boldsymbol{u}_{t}^{k-1}]))}$$

• Importance Sampling Strategy to reduce noise:



• Temporal Interactive Dual Sequence Modeling:



 $relation_t = \sigma(\boldsymbol{Q}_2(\sigma(\boldsymbol{Q}_1((\boldsymbol{h}_t^u \odot \boldsymbol{h}_t^\upsilon) || (\boldsymbol{u} \odot \boldsymbol{v})))))$

$$\beta_t = \frac{\exp(relation_t)}{\sum_{i=1}^T \exp(relation_i)}$$

$$\boldsymbol{r}_{u} = \sum_{t=1}^{T} \beta_{t} \boldsymbol{h}_{t}^{u}, \ \boldsymbol{r}_{\upsilon} = \sum_{t=1}^{T} \beta_{t} \boldsymbol{h}_{t}^{\upsilon}$$

Datasat Matria		Grou	Group 1		Group 2		Group 3		
Dataset Metric	Metric	SVD++	DELF	GRU4Rec	Caser	SASRec	RRN	GCMC	SCoRe
	HR@1	0.2378	0.6536	0.6703	0.6777	0.6979	0.6633	0.6591	0.7001
	HR@5	0.4288	0.9087	0.8911	0.8907	0.9047	0.903	0.9063	0.9118
CCMR	HR@10	0.5462	0.9586	0.9268	0.9184	0.9361	0.9469	0.9508	0.9583
CCIVIK	NDCG@5	0.3356	0.7919	0.7917	0.7954	0.8123	0.7957	0.7946	0.8161
	NDCG@10	0.3735	0.8084	0.8034	0.8045	0.8226	0.8101	0.8092	0.8281
	MRR	0.3375	0.7617	0.7662	0.7699	<u>0.7878</u>	0.7681	0.7652	0.7913
	HR@1	0.1229	0.2001	0.1979	0.2029	0.3312	0.4177	0.4254	0.4764
Tmall	HR@5	0.3098	0.3765	0.3818	0.4037	0.6307	0.6452	0.6449	0.6806
	HR@10	0.3438	0.4573	0.4713	0.4925	0.7072	0.7449	0.7512	0.7632
	NDCG@5	0.2112	0.2975	0.2947	0.3089	0.4935	0.5368	0.5403	0.5842
	NDCG@10	0.2342	0.3130	0.3236	0.3376	0.5184	0.5691	0.5747	0.6109
	MRR	0.1373	0.2990	0.2950	0.3058	0.4676	0.5257	0.5314	0.5734
	HR@1	0.0705	0.1299	0.1117	0.1292	0.1897	0.2138	0.2164	0.2431
	HR@5	0.1539	0.2999	0.3001	0.3022	0.3871	0.4695	0.4672	0.4991
Taobao	HR@10	0.2063	0.4656	0.4395	0.4539	0.5331	0.6213	0.6156	0.6467
	NDCG@5	0.0998	0.1719	0.1667	0.1724	0.2512	0.3447	0.3449	0.3590
	NDCG@10	0.1082	0.2008	0.1995	0.2013	0.2788	0.3937	0.3929	0.4112
	MRR	0.0935	0.1203	0.1119	0.1232	0.2198	0.3402	<u>0.3411</u>	0.3786

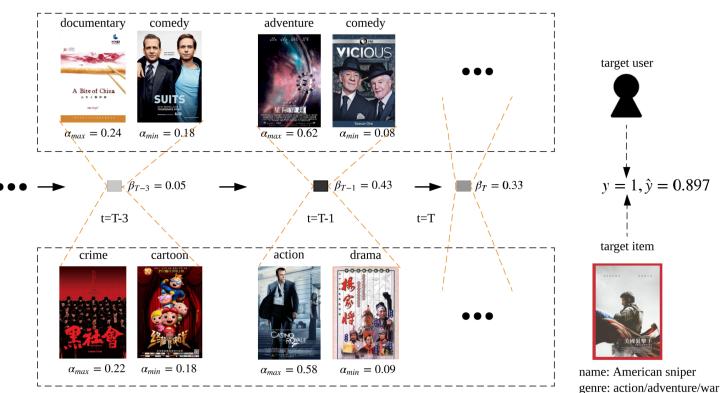
Table 5: Performance comparison on different size ofuser/item-rooted interaction set.

Dataset	Metric	Size of Interaction Set						
	Wietric	5	10	15	20			
	HR@10	0.9583	0.9555	0.9498	0.9423			
CCMR	NDCG@10	0.8281	0.8239	0.8232	0.8221			
	MRR	0.7913	0.7909	0.7895	0.7829			
Tmall	HR@10	0.7589	0.7632	0.7619	0.7607			
	NDCG@10	0.6091	0.6109	0.6087	0.6052			
	MRR	0.5658	0.5734	0.5698	0.5611			
Taobao	HR@10	0.6288	0.6467	0.6319	0.6299			
	NDCG@10	0.4068	0.4112	0.4081	0.4027			
	MRR	0.3679	0.3786	0.3673	0.3648			

Table 6: Performance comparison of ablation study

Dataset	Metric	models						
	Metric	RIA	Single-hop	GAT	RS	SCoRe		
	HR@10	0.9509	0.9296	0.9358	0.9452	0.9583		
CCMR	NDCG@10	0.8157	0.8011	0.8104	0.8217	0.8281		
	MRR	0.7741	0.7621	0.7724	0.7841	0.7913		
	HR@10	0.7620	0.7632	0.7287	0.7431	0.7632		
Tmall	NDCG@10	0.5893	0.6029	0.5866	0.6032	0.6109		
	MRR	0.5567	0.5633	0.5543	0.5662	0.5734		
	HR@10	0.6216	0.6172	0.6201	0.6212	0.6467		
Taobao	NDCG@10	0.4001	0.3991	0.4017	0.4015	0.4112		
	MRR	0.3575	0.3456	0.3498	0.3523	0.3786		

user-side (1-hop)



item-side (2-hop)

