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Bid Landscape Forecasting

In RTB scenario, it is very important for DSPs(agents for advertisers) to
model the market price(price for the ad impression after the auction)
distribution of each bid request. The predicted market price distribution is
a key part of the DSP’s bidding strategy.

- Data: 20180211

« Hour: 14 .
* Weekday: 7 Prahg:mstlc
*IP:72.10.51." nsity
* Region: England .

= City: London Mappin

* Ad Exchange: Google

+* Domain: yahoo.co.uk

* URL: http://www.yahoo.co.uk/abc/xyz. html
= 0S: Windows

* Browser: Chrome Market Price
» Ad size: 300*250

« User tags: Sports, Electronics

Auction Information Bid Landscape
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The Challenges

@ Nearly impossible to model each DSPs bidding strategy.

@ Censorship issue: one DSP can only know the market price of a bid
request if it wins the bid. So if only use winning bids to train the
model, it will introduce heavy bias.

@ Market price distribution can be diverse, it is highly related to the
features of the bid request.(eg.location)
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The Challenges

Censorship Issue

Average market price of winning set is much larger than that of losing set.

day # of bids  # of win. bids WR EWR WR AUC Avg. WP Avg. WPon W Avg. WP on L
2013-06-06 1,821,479 1,514,416 0.83 0.83 0.89 74.86498 52.46772 185.3269
2013-06-07 1,806,062 1,524,314 0.84 0.85 0.90 72.31279 51.12051 186.9674
2013-06-08 1,634,967 1,352,038 0.83 0.83 0.87 81.14319 58.48506 189.4200
2013-06-09 1,651,630 1,366,097 0.83 0.83 0.88 81.31667 58.95707 188.2934
2013-06-10 1,920,576 1,603,798 0.84 0.83 091 79.83572 58.91341 185.7621
2013-06-11 1,745,905 1,461,085 0.84 0.86 0.85 79.62260 58.91626 185.8431
2013-06-12 1,657,578 1,378,728 0.83 0.85 0.84 79.99693 58.80196 184.7920

Jiarui Qin (SJTU) Bid Landscape Forecasting in Real-Time Bidd



The Challenges

Diverse distribution

Different bid request has very different market price distribution.
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© Parametric Approach
@ Gamma Based Distribution
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Gamma Based Distribution

Methodology

It assumes that the market price distribution is a gamma distribution.
For i-th bid record in dataset, the PDF fz,,) and CDF Fz ., of the
market price Z; is

1 Ki—1 i
Zi(z) = Tk € (1)
1 b;
Fziz) = WV(kh 5) (2)

where z; is market price, b; is bidding price, I and ~y is the gamma
function and the lower incomplete gamma function. k; and 6 is the
parameters of the gamma distribution of i-th record.
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Gamma Based Distribution

Methodology

Accroding to gamma distribution, the predicted market price is E[Z;|x;]
Zi = E[Z,'|X,'] = k,'9 = ebX (3)

Now we can derive the loss function.

J(B) = = S litly + (1 - )] (@
Lw = In(fz(z)) (5)

Ly = In(1— Fz ) (6)

b= argmin —J(b) + aR(b) (7)

where y; is the label indicating if it is a winning record or not.
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Gamma Based Distribution

Training

It uses a two-phase training.
First step just finds the K; and theta

ki, 0 = arg max J(k;, 0)

Second step just train b

~

1 A A
b=argmin = (kif — €") + aR(b
argmin - ( e”) + aR(b)

1

So, the predicted market price of x; is e
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Mixture Model

Methodology

It proposes a linear regression model to predict market price z; for i-th bid.

zZi = BTX,'+€,' (10)

It assumes that ¢; is and iid and normally distributed random variable with
zero mean and o variance. It uses negative log-likelyhood as loss function.

T~ tog(o(Z iy 1)

: g
iew

W is the winning set.
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Mixture Model

Methodology

We need to consider censorship issue, and take the losing bid records into
consideration.

bi — Bl x;i
P(zi < bi) = Pe; < bj = i) = ®(=—<2=) - (12)
3T
> —tog(o(Z L) 5 iog(1 - o(XCamy) (1)

iew ielL

where L is losing set. Minimize the above loss.
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Mixture Model

Methodology

Bim and Bgm both have bias. Needs to mix them using winning rate.

zi = [P(b; > 2)Bim + (1 — P(bi > 2))Bam] "% = Blhaxi  (14)

mix
Using logistic function to predict winning rate.

1

P(zi < bj) = ————
(Z/< I) 1+e_61'fxi

If we use Eq. 12 to calculate winning rate, it may introduce hidden
dependency.
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© Non-Parametric Approach
@ Survival Tree Model
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Survival Tree Model

Methodology: Survival Analysis

It uses Kaplan-Meier Product-Limit method to model the censored data.

According to survival theory, the probability of losing an auction with
bidding price by is

k)= I = (16)
where n; is the number of auctions that cannot be won with bidding price
b; — 1, and d; is the number of auctions whose market price is just b; — 1.
So, the winning probability with bidding price by is w(by) =1 — I(by), and
market price probability is p(z) = w(z + 1) — w(z).
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Survival Tree Model

Methodology: Binary Decision Tree

As the market price distribution is highly related to the features of the bid
request, it uses binary decision tree to classify the bid requests and all the
bid requests that are in same leaf node have same market price distribution
which can be calculated using Kaplan-Meier Product-Limit method.

Feature weekday hour region city ..
— 079 056 091 084 ..

Zdexchange
KLD =1.25

KLD = 0.82

useragent

slotwidth
KLD = 0.63

KLD =0.58
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Survival Tree Model

Methodology: Binary Decision Tree

Algorithm 1. K-Means clustering with KL-Divergence

Input: Training sample S = {s1, s2,..., sn }; Attribute A;;
Output: KL-Divergence Dj over attribute A;, Data clusters St and 52
1: Randomly split the data into two parts S' and S?;

2: while not converged do

3:  E-step:

4:  Get price probability distribution @, for S* and Q- for S§2;
5:  M-step:

6: for all My.k € {1,2,3,...,n} do

7 Calculate the K7 between M;, and Q, by Eq. (4);

8: Calculate the K, between M} and Q2 by Eq. (4);

9: Update S* or $? by comparing with K; and Ka;

10:  end for

11:  Calculate the Dyi; between Q1 and Q2 by Eq. (4);
12: end while
13: Return Dj;, S* and S%;

s; is the set of training samples with the same value for attribute A;. For
S1,52,...,Sn, we have n corresponding market price probability distributions
My, My, ..., M,

Jiarui Qin (SJTU) Bid Landscape Forecasting in Real-Time Bidd May. 23, 2018 20 / 31



Survival Tree Model

Methodology: Binary Decision Tree

Algorithm 2. Building Decision Tree with K-Means clustering
Input: Training sample S which contain N attributes;
1: for all attribute A;,j € {1,2,3,...,N} do

Calculate the KL-Divergence Dy for attribute A; by Algorithm 1;
: end for
: D&efL max {D}l<L>D?<Lv---va<L>Di¥L}§

: Find Apes with DRSS

Create a decision node that splits on Apest;

: Split the decision node into two nodes S' and S
. Return new nodes as children of the parent node

0N DU WY

Run the building process recursively, and stop until the length of sample
data in node is less than a predifined value. When a new bid request
comes, classify it to some leaf node, and get the market price distribution.
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@ Our Approach: Deep Survival Analysis
@ Survival Analysis
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Survival Analysis

We define a instant winning rate as

. Pr(b<z< b+ Ablz>Db)
o) = gin, = o

it is like % in Eq.16. And we can drive that
J

h(b) = lim Pr(b <z < b+ Ab)/Pr(z > b)

Ab—0 Ab
i S(b) — S(b+ Ab)/Pr(z > b)
Ab—0 Ab
_ S, S(b+1)
- S(b) 5(b)

where S(b) = Pr(z > b), it is losing probability of bidding price b.
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Survival Analysis

So, losing probability at bidding price b is S(b)

S(b) = [T(1 - () (18)

i<b
and winning probability W(b) is

W(b) =1 — S(b) (19)

p(z) = h(2)S(2) (20)
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@ Our Approach: Deep Survival Analysis

@ Using RNN
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Using RNN

We propose a RNN model to fit the survival model. the | th RNN cell

predicts the instant winning rate h; given the bid request feature x; and a
bid price b based on the previous events.

winning cases

(x, 1) (x,2) (x,2) (X, b-1) (X, b)
hz

hy hy hi4 h
e >
-__=__’®
i S(b)
P
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@ Our Approach: Deep Survival Analysis

@ Loss Function
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For all bid records, we can utilize a cross entropy loss, because we can
treat it as a binary classification problem.

For all winning records, we use negative log-likelyhood to discribe how
good is the model. We combine the two loss functions.

Leensor = — Y cilog S(bilxi) + (1 - ci)log(1 — S(bilx;))  (21)
xj,bi€D

L=— Y log(p(z)) (22)

Xi,Zi€ Dyjin
L=al,+ (1 - OC)Lcensor (23)

where ¢; is the label censor(losing) or not. Just minimize L.
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@ Our Approach: Deep Survival Analysis

@ Evaluation
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Evaluation

Three metrics:

AUC, Log-Loss, ANLP(Average Negative Log Probability)

Winning Probability Curve
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